Fe b 20 09 Space of Ricci flows ( I )

نویسندگان

  • Xiuxiong Chen
  • Bing Wang
چکیده

In this paper, we study the moduli spaces of noncollapsed Ricci flow solutions with bounded energy and scalar curvature. We show a weak compactness theorem for such moduli spaces and apply it to study isoperimetric constant control, Kähler Ricci flow and moduli space of gradient shrinking solitons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fe b 20 07 Nonholonomic Ricci Flows and Running Cosmological Constant : I . 4 D Taub – NUT Metrics

In this work we construct and analyze exact solutions describing Ricci flows and nonholonomic deformations of four dimensional (4D) Taub-NUT spacetimes. It is outlined a new geometric techniques of constructing Ricci flow solutions. Some conceptual issues on spacetimes provided with generic off–diagonal metrics and associated nonlinear connection structures are analyzed. The limit from gravity/...

متن کامل

ar X iv : 0 90 6 . 33 09 v 1 [ m at h . A P ] 1 8 Ju n 20 09 ricci flow of negatively curved incomplete surfaces

We show uniqueness of Ricci flows starting at a surface of uniformly negative curvature, with the assumption that the flows become complete instantaneously. Together with the more general existence result proved in [10], this settles the issue of well-posedness in this class.

متن کامل

ar X iv : 0 90 2 . 28 05 v 1 [ m at h . D G ] 1 7 Fe b 20 09 Computing the density of Ricci - solitons on CP 2 ♯ 2 CP 2

This is a short note explaining how one can compute the Gaussian density of the Kähler-Ricci soliton and the conformally Kähler, Einstein metric on the two point blow-up of the complex projective plane.

متن کامل

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

2 4 Fe b 20 08 Goldman flows on the Jacobian Lisa

We show that the Goldman flows preserve the holomorphic structure on the moduli space of homomorphisms of the fundamental group of a Riemann surface into U(1), in other words the Jacobian.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009